skip to main content


Search for: All records

Creators/Authors contains: "Lee, Byeongdu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 14, 2024
  2. Manganese (Mn) oxides are abundant in aquatic and terrestrial environments, where they play significant roles in redox cycling and biological metabolisms. We recently observed that Mn oxides were homogenously formed during the abiotic oxidation of Mn2+(aq) to Mn(IV) by O2•− via nitrate photolysis, at a rate comparable to that of biotic Mn oxides formation. On the other hand, for the heterogeneous formation of Mn oxides, the presence of a substrate can alter the required thermodynamic driving force, which may affect their crystalline phases and further influence the oxidative capability of redox cycling in environmental systems. However, little is known about the photochemically-induced heterogeneous formation of Mn oxides on substrates. In this study, we investigated the heterogeneous formation of Mn oxides on a quartz substrate in the presence of two environmentally abundant cations, Na+ and Mg2+. In contrast to homogeneously generated Mn oxides, the heterogeneously formed Mn oxides displayed earlier crystalline phase evolutions and morphological changes over time. Additionally, the coexistence of Na+ and Mg2+ ions greatly affected the initial crystalline phase and the phase evolution, as well as the surface morphologies of the Mn oxides. These discoveries contribute to our understanding of how various Mn oxides form in nature and provide insight into the processes involved in manufacturing specific Mn oxide crystalline structures for engineering applications. 
    more » « less
    Free, publicly-accessible full text available July 6, 2024
  3. Abstract Carbon–carbon bond cleavage reactions, adapted to deconstruct aliphatic hydrocarbon polymers and recover the intrinsic energy and carbon value in plastic waste, have typically been catalysed by metal nanoparticles or air-sensitive organometallics. Metal oxides that serve as supports for these catalysts are typically considered to be inert. Here we show that Earth-abundant, non-reducible zirconia catalyses the hydrogenolysis of polyolefins with activity rivalling that of precious metal nanoparticles. To harness this unusual reactivity, our catalytic architecture localizes ultrasmall amorphous zirconia nanoparticles between two fused platelets of mesoporous silica. Macromolecules translocate from bulk through radial mesopores to the highly active zirconia particles, where the chains undergo selective hydrogenolytic cleavage into a narrow, C 18 -centred distribution. Calculations indicated that C–H bond heterolysis across a Zr–O bond of a Zr(O) 2 adatom model for unsaturated surface sites gives a zirconium hydrocarbyl, which cleaves a C–C bond via β-alkyl elimination. 
    more » « less